

Question			Expected Answers	Marks	Additional Guidance
2					
	a		$\begin{aligned} & \hline \rho=\mathrm{RA} / l \\ & \text { with terms defined } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	full word definition gains both marks allow A is area as adequate; no unit cubes
	b	i	either the cable consists of (38) strands in parallel; or the area of the cable is 38 times the area of a strand or vice versa; so the resistance of 1 strand is 38 times bigger, (i.e. $1.98 \Omega \mathrm{~km}^{-1}$) or the resistance is inversely proportional to the area	B1 B1	$\max 1$ mark for $38 \times 0.052=1.98$ with no further explanation allow with either and or allow only with or
		ii	$\begin{aligned} & A=\rho I / R=2.6 \times 10^{-8} \times 1000 / 2.0 \\ & =1.3 \times 10^{-5}\left(\mathrm{~m}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { allow } 1 \text { mark max. for } R=0.052 \text { giving } \\ & A=5.0 \times 10^{-4}\left(\mathrm{~m}^{2}\right) \\ & \text { give } 1 \text { mark } \max \text {. for } 1.3 \times 10^{-8}\left(\mathrm{~m}^{2}\right) \end{aligned}$
	c	i	$\begin{array}{\|l\|} \hline \mathrm{P}=\mathrm{VI}=400 \times 10^{3} \times 440 \\ =1.8 \times 10^{8}(\mathrm{~W}) \text { or } 180 \mathrm{M}(\mathrm{~W}) \\ \hline \end{array}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	$\mathrm{P}=\mathrm{VI}$ not adequate for first mark expect 176
		ii	2000/176 = 11.4 so 12 required	B1	ecf(c)(i); using 180 gives 11.1
		iii	$\begin{aligned} & \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \\ & =440^{2} \times 0.052 \\ & =1.0 \times 10^{4} \mathrm{~W}\left(\mathrm{~km}^{-1}\right) \text { or } 10 \mathrm{~kW}\left(\mathrm{~km}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	$\begin{aligned} & \text { accept power/cable }=2000 / 12=167 \mathrm{MW} \\ & \mathrm{I}=167 \mathrm{M} / 400 \mathrm{k}=417 \mathrm{~A} \\ & \mathrm{P}=417^{2} \times 0.052=9.0(3) \mathrm{kW}\left(\mathrm{~km}^{-1}\right) \\ & \text { N.B. answer mark includes consistent unit } \\ & \hline \end{aligned}$
		iv	$\begin{aligned} & \hline \text { power lost per cable }=10 \mathrm{k} \times 100 \times 12=12.0 \mathrm{MW} \\ & \text { fraction remaining }=(2000-12) / 2000=0.994 \times 100=0.994 \text { so } 99.4 \% \\ & \text { or power lost per strand }=10 \mathrm{k} \times 100=1.0 \mathrm{MW} \\ & \text { fraction remaining }=(176-1) / 176=0.994 \mathrm{so} 99.4 \% \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ecf(c)(ii)(iii) allow second mark for 'correct' answer as fraction not percentage with BOD sign allow 1 mark max. if give correct \% lost given rather than \% remaining allow 1 mark max. for $100 \times(2000-1) / 2000=99.95 \%$
			Total question 2	14	

Question			Expected Answers	Marks	Additional Guidance
$\mathbf{3}$					
	\mathbf{a}		resistors in series add to 20Ω and current is 0.60 A so p.d. across XY is $0.60 \times 12(=7.2 \mathrm{~V})$	B1 B1	accept potential divider stated or formula gives $(12 / 20) \times 12 \mathrm{~V}(=7.2) \mathrm{V}$
	\mathbf{b}	\mathbf{i}	the resistance of the LDR decreases (so total resistance in circuit decreases) and current increases	M1 A1	
		ii	resistance of LDR and 12Ω (in parallel)/across XY decreases so has smaller share of supply p.d. (and p.d. across XY falls)	B1 B1	alternative I increases so p.d. across 8.0Ω increases; so p.d. across XY falls
			Total question 3	$\mathbf{6}$	

Question			Answer	M	Guidance
4					
	a		for R_{1} for R_{2}	B1 B1	
	b	i	500Ω	B1	accept $\pm 20 \Omega$
		ii	7.0 I I x 500; I 0.014 (A)	B1	ecf b(i)
		iii	$\begin{aligned} & 5.0=0.014 \times R \quad \text { or } \quad 12=0.014(500+R) \\ & R=360 \Omega \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \text { ecf b(i)(ii) } \\ & \text { allow } R=500 \times 5 / 7=360 \Omega \\ & \hline \end{aligned}$
		iv	$\begin{aligned} & \text { (at } \left.200^{\circ} \mathrm{C}\right) \mathrm{R}_{\mathrm{th}}=250 \Omega \\ & \mathrm{~V} \text { across thermistor }=12 \times 250 /(250+350)=5.0 \mathrm{~V} \\ & \text { alt } 5.0=12 \times \mathrm{R} /(\mathrm{R}+350) \\ & \text { or } \mathrm{I}=7.0 / 350=0.02 \mathrm{~A} ; \mathrm{V}_{\mathrm{h}}=5.0=0.02 \times \mathrm{R} \\ & \mathrm{R}=250 \Omega \text { which occurs at } 200^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	allow $R_{\text {th }}=250 \pm 10$ giving 4.8 to 5.1 V expect 350 or 360; allow 1 SF where answer is 5.0 NOT $250 \times 0.02=5.0 \mathrm{~V} ; 0.02 \mathrm{~A}$ must be justified allow $7.0=12 \times 350 /(350+\mathrm{R})$
	c		switch on $5.0=12 \times 250 /(250+R)$ or $7.0=12 \times R /(250+R)$ giving $R=350 \Omega$ which is $190^{\circ} \mathrm{C}$ switch off $7.0=12 \times 250 /(250+R)$ or $5.0=12 \times R /(250+R)$ giving $R=180 \Omega$ which is $210^{\circ} \mathrm{C}$ or Switch on, R2 / R1 $=7 / 5$ giving R2-250 $\times 7 / 5=350$ ohm Switch off, R2 / R1 = 5/7 giving R2 $=250 \times 5 / 7=179 \mathrm{ohm}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	accept solution in 2 stages first calculating currents on $\mathrm{I}=0.02$ and $\mathrm{R}=7 / 0.02$ off $I=0.028$ and $R=5 / 0.028$ allow $\pm 5^{\circ} \mathrm{C}$ in reading from graph N.B. zero marks for correct temperatures quoted without some correct working/justification
			Total question 2	12	

