Question		on	Expected Answers	Μ	Additional Guidance
1					
	а	i	V J ⁻¹	B1	4 correct 3 marks;
			\mathbf{R} V ⁻¹	B1	2 correct 2 marks
			P J ⁻¹	B1	1 correct 1 mark
			$I C^{-1}$.		
	b	i	using $V_{out} = R_2/(R_1 + R_2) V_{in}$: alt: 2.4 = I x 560	C1	
			$V_{out} = 3.6 V$ so I = 4.3 mA		accept R ₂ = (3.6/2.4) x 560
			$3.6 = R_2/(560 + R_2) 6$ $3.6 = I R_2$	C1	or $.2.4 = 560/(560 + R_2) 6$
			$R_2 = 840 (\Omega)$	A1	
		ii	$I = 4.3 \times 10^{-3} (A)$	B1	accept 4.3 m(A) or 3/700 (A)
					ecf (b)(i) i.e. $I = 6/(560 + R_2)$
	С	i	20 ± 2 (°C)	B1	
		ii	R _{Th} will fall/ resistance will fall	B1	
			giving greater share of supply V across fixed R/AW	B1	accept explanation in terms of potential divider
					equation or current increases or current same
					in both resistors/resistors in series
			causing the voltage across (fixed) R/voltmeter reading to rise	B1	
		iii	ΔR is large for small ΔT at low temperatures/AW in terms of	M2	accept sensitivity greater at low temperature
			gradient		or vice versa or ΔR is small for small ΔT at
					high temperatures scores 1 out of 2
			so thermistor is better in circuit to control low temp, refrigerator	A1	
			Total question 3	14	

Question		on	Expected Answers	Marks	Additional Guidance
2					
	а		$\rho = RA/I$	M1	full word definition gains both marks
			with terms defined	A1	allow A is area as adequate; no unit cubes
	b	i	either the cable consists of (38) strands in parallel;	B1	max 1 mark for 38 x 0.052 = 1.98 with no
			or the area of the cable is 38 times the area of a strand or vice versa;		further explanation
			so the resistance of 1 strand is 38 times bigger, (i.e. 1.98 Ω km ⁻¹)		allow with either and or
			or the resistance is inversely proportional to the area	B1	allow only with or
		ii	$A = \rho I/R = 2.6 \times 10^{-8} \times 1000/2.0$	C1	allow 1 mark max. for R = 0.052 giving
			$= 1.3 \times 10^{-5} (m^2)$	A1	$A = 5.0 \times 10^{-4} (m^2)$
					give 1 mark max. for 1.3 x 10 ⁻⁸ (m ²)
	С	i	$P = VI = 400x \ 10^3 \ x \ 440$	C1	P = VI not adequate for first mark
			$= 1.8 \times 10^8$ (W) or 180 M(W)	A1	expect 176
		ii	2000/176 = 11.4 so 12 required	B1	ecf(c)(i); using 180 gives 11.1
		iii	$P = I^2 R$	C1	accept power/cable = 2000/12 = 167 MW
			$= 440^2 \times 0.052$	C1	I = 167M/400k = 417 A
			$= 1.0 \times 10^4 \text{ W (km^{-1}) or 10 kW (km^{-1})}$	A1	$P = 417^2 \times 0.052 = 9.0(3) \text{ kW (km}^{-1})$
					N.B. answer mark includes consistent unit
		iv	power lost per cable = $10 \text{ k} \times 100 \times 12 = 12.0 \text{ MW}$	C1	ecf(c)(ii)(iii)
			fraction remaining = $(2000 - 12)/2000 = 0.994 \times 100 = 0.994 \text{ so } 99.4\%$	A1	allow second mark for 'correct' answer as
			or power lost per strand = 10 k x100 = 1.0 MW		fraction not percentage with BOD sign
			fraction remaining = (176 – 1)/176 = 0.994 so 99.4%		allow 1 mark max. if give correct % lost
					given rather than % remaining
					allow 1 mark max. for
					100 x (2000 – 1)/2000 = 99.95%
			Total question 2	14	

Question		on	Expected Answers	Marks	Additional Guidance
3					
	а		resistors in series add to 20 Ω and current is 0.60 A	B1	accept potential divider stated or formula
			so p.d. across XY is 0.60 x 12 (= 7.2 V)	B1	gives (12 /20) x 12 V (= 7.2)V
	b	i	the resistance of the LDR decreases	M1	
			(so total resistance in circuit decreases) and current increases	A1	
		ii	resistance of <u>LDR and 12 Ω (in parallel)/across XY decreases</u>	B1	alternative I increases so p.d. across 8.0 Ω
			so has smaller share of supply p.d. (and p.d. across XY falls)	B1	increases; so p.d. across XY falls
			Total question 3	6	

G	Question		Answer	Μ	Guidance
4					
	а		for R_1	B1	
			for R_2	B1	
	b	i	500 Ω	B1	accept ± 20 Ω
		ii	7.0 = I x 500; I 0.014 (A)	B1	ecf b(i)
		iii	5.0 = 0.014 x R or $12 = 0.014(500 + R)$	M1	ecf b(i)(ii)
			R = 360 Ω	A1	allow R = 500 x 5/7 = 360 Ω
		iv	(at 200°C) R _{th} = 250 Ω	B1	allow R_{th} = 250 ± 10 giving 4.8 to 5.1 V
			V across thermistor =12 x 250/(250 + 350) = 5.0 V	B1	expect 350 or 360; allow 1 SF where answer is 5.0
			alt 5.0 = 12 x R/(R + 350)		NOT 250 x 0.02 = 5.0 V; 0.02 A must be justified
			or I = 7.0/350 = 0.02 A; V _h = 5.0 = 0.02 x R		allow 7.0 = 12 x 350/(350 + R)
			R = 250 Ω which occurs at 200°C		
	С		switch on 5.0 = 12 x 250/(250 + R) or 7.0 = 12 x R/(250 + R)	M1	accept solution in 2 stages first calculating currents
			giving R = 350Ω which is 190° C	A1	on I = 0.02 and R = 7/0.02
			switch off 7.0 = 12 x 250/(250 + R) or 5.0 = 12 x R/(250 + R)	M1	off I = 0.028 and R = 5/0.028
			giving R = 180Ω which is 210° C	A1	allow ± 5°C in reading from graph
			or Switch on, R2 / R1 = 7/5 giving R2 - 250 x 7/5 = 350 ohm		N.B. zero marks for correct temperatures quoted
			Switch off, R2 / R1 = 5/7 giving R2 = 250 x 5/7 = 179 ohm		without some correct working/justification
			Total question 2	12	